Adaptive functional linear regression
نویسندگان
چکیده
We consider the estimation of the slope function in functional linear regression, where scalar responses are modeled in dependence of random functions. Cardot and Johannes [2010] have shown that a thresholded projection estimator can attain up to a constant minimax-rates of convergence in a general framework which allows to cover the prediction problem with respect to the mean squared prediction error as well as the estimation of the slope function and its derivatives. This estimation procedure, however, requires an optimal choice of a tuning parameter with regard to certain characteristics of the slope function and the covariance operator associated with the functional regressor. As this information is usually inaccessible in practice, we investigate a fully data-driven choice of the tuning parameter which combines model selection and Lepski’s method. It is inspired by the recent work of Goldenshluger and Lepski [2011]. The tuning parameter is selected as minimizer of a stochastic penalized contrast function imitating Lepski’s method among a random collection of admissible values. This choice of the tuning parameter depends only on the data and we show that within the general framework the resulting data-driven thresholded projection estimator can attain minimax-rates up to a constant over a variety of classes of slope functions and covariance operators. The results are illustrated considering different configurations which cover in particular the prediction problem as well as the estimation of the slope and its derivatives.
منابع مشابه
Adaptive Functional Linear Regression via Functional Principal Component Analysis and Block Thresholding∗
Theoretical results in the functional linear regression literature have so far focused on minimax estimation where smoothness parameters are assumed to be known and the estimators typically depend on these smoothness parameters. In this paper we consider adaptive estimation in functional linear regression. The goal is to construct a single data-driven procedure that achieves optimality results ...
متن کاملArtificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river
ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...
متن کاملAdaptive Functional Linear Regression
Theoretical results in the functional linear regression literature have so far focused on minimax estimation where smoothness parameters are assumed to be known and the estimators typically depend on these smoothness parameters. In this paper we consider adaptive estimation in functional linear regression. The goal is to construct a single data-driven procedure that achieves optimality results ...
متن کاملFunctional Adaptive Model Estimation
In this article we are interested in modeling the relationship between a scalar, Y , and a functional predictor, X(t). We introduce a highly flexible approach called ”Functional Adaptive Model Estimation” (FAME) which extends generalized linear models (GLM), generalized additive models (GAM) and projection pursuit regression (PPR) to handle functional predictors. The FAME approach can model any...
متن کاملRelevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation
This study examines the capability of the Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of driven piles and drilled shafts. RVM is a sparse method for training generalized linear models, while MARS technique is basically an adaptive piece-wise regression approach. In this paper, pile capacity prediction models are developed...
متن کاملAdaptive Global Testing for Functional Linear Models
This paper studies global testing of the slope function in functional linear regression models. A major challenge in functional global testing is to choose the dimension of projection when approximating the functional regression model by a finite dimensional multivariate linear regression model. We develop a new method that simultaneously tests the slope vectors in a sequence of functional prin...
متن کامل